Non-stationary discharge patterns in motor cortex under subthalamic nucleus deep brain stimulation
نویسندگان
چکیده
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) directly modulates the basal ganglia (BG), but how such stimulation impacts the cortex upstream is largely unknown. There is evidence of cortical activation in 6-hydroxydopamine (OHDA)-lesioned rodents and facilitation of motor evoked potentials in Parkinson's disease (PD) patients, but the impact of the DBS settings on the cortical activity in normal vs. Parkinsonian conditions is still debated. We use point process models to analyze non-stationary activation patterns and inter-neuronal dependencies in the motor and sensory cortices of two non-human primates during STN DBS. These features are enhanced after treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which causes a consistent PD-like motor impairment, while high-frequency (HF) DBS (i.e., ≥100 Hz) strongly reduces the short-term patterns (period: 3-7 ms) both before and after MPTP treatment, and elicits a short-latency post-stimulus activation. Low-frequency DBS (i.e., ≤50 Hz), instead, has negligible effects on the non-stationary features. Finally, by using tools from the information theory [i.e., receiver operating characteristic (ROC) curve and information rate (IR)], we show that the predictive power of these models is dependent on the DBS settings, i.e., the probability of spiking of the cortical neurons (which is captured by the point process models) is significantly conditioned on the timely delivery of the DBS input. This dependency increases with the DBS frequency and is significantly larger for high- vs. low-frequency DBS. Overall, the selective suppression of non-stationary features and the increased modulation of the spike probability suggest that HF STN DBS enhances the neuronal activation in motor and sensory cortices, presumably because of reinforcement mechanisms, which perhaps involve the overlap between feedback antidromic and feed-forward orthodromic responses along the BG-thalamo-cortical loop.
منابع مشابه
Deep brain stimulation modulates synchrony within spatially and spectrally distinct resting state networks in Parkinson’s disease
Chronic dopamine depletion in Parkinson's disease leads to progressive motor and cognitive impairment, which is associated with the emergence of characteristic patterns of synchronous oscillatory activity within cortico-basal-ganglia circuits. Deep brain stimulation of the subthalamic nucleus is an effective treatment for Parkinson's disease, but its influence on synchronous activity in cortico...
متن کاملEarly outcome of subthalamic nucleus deep brain stimulation (STN-DBS) in advanced parkinson disease in first trial of Iranian patients
Abstract Background: To improve the debilitating features of Parkinson disease (PD) different medical and surgical approaches are available. Subthalamic nucleus deep brain stimulation (STN-DBS) was appeared to be a promising method during last two decades. This study aimed to evaluate early motor outcomes of this procedure in first trial of Iranian patients . Methods: Thirty-seven...
متن کاملCALL FOR PAPERS Neurobiology of Deep Brain Stimulation Fidelity of frequency and phase entrainment of circuit-level spike activity during DBS
Agnesi F, Muralidharan A, Baker KB, Vitek JL, Johnson MD. Fidelity of frequency and phase entrainment of circuit-level spike activity during DBS. J Neurophysiol 114: 825–834, 2015. First published June 18, 2015; doi:10.1152/jn.00259.2015.—High-frequency stimulation is known to entrain spike activity downstream and upstream of several clinical deep brain stimulation (DBS) targets, including the ...
متن کاملBrain networks modulated by subthalamic nucleus deep brain stimulation.
Deep brain stimulation of the subthalamic nucleus is an established treatment for the motor symptoms of Parkinson's disease. Given the frequent occurrence of stimulation-induced affective and cognitive adverse effects, a better understanding about the role of the subthalamic nucleus in non-motor functions is needed. The main goal of this study is to characterize anatomical circuits modulated by...
متن کاملThe effect of bilateral subthalamic nucleus deep brain stimulation (STN-DBS) on the acoustic and prosodic features in patients with Parkinson’s disease: A study protocol for the first trial on Iranian patients
Background: The effect of subthalamic nucleus deep brain stimulation (STN-DBS) on the voice features in Parkinson’s disease (PD) is controversial. No study has evaluated the voice features of PD underwent STN-DBS by the acoustic, perceptual, and patient-based assessments comprehensively. Furthermore, there is no study to investigate prosodic features before and after DBS in PD. The curren...
متن کامل